Generation of higher-order atomic dipole squeezing in a high-Q micromaser cavity: VIII. multi-photon interaction
نویسندگان
چکیده
In our preceding serial works, we have investigated the generation of higherorder atomic dipole squeezing (HOADS) in a high-Q micromaser cavity, discussing the effects of dynamic Stark shift, atomic damping, atomic coherence and nonlinear one-photon processes and different initial states (for example, correlated and uncorrelated states, superposition states, squeezed vacuum). In this paper, we continue to study HOADS in a high-Q micromaser cavity, but consider that the atom interacts with the optical field via a multi-photon transition process and that the initial atom is arbitrarily prepared. For a vacuum initial field, we demonstrate that HOADS cannot occur if the atom is initially prepared in a chaotic state and that a coherent atomic state generates less efficient and stable HOADS than an arbitrary one. It is found that large detuning may lead to enhanced and strong HOADS. PACS (numbers): 42.50.Dv, 42.50.Lc, 32.80.-t
منابع مشابه
Atom-field transfer of coherence in a two-photon micromaser assisted by a classical field
We investigate the transfer of coherence from atoms to a cavity field initially in a statistical mixture in a two-photon micromaser arrangement. The field is progressively modified from a maximum entropy state (thermal state) towards an almost pure state (entropy close to zero) due to its interaction with atoms sent across the cavity. We trace over the atomic variables, i.e., the atomic states ...
متن کاملar X iv : q ua nt - p h / 01 11 11 0 v 1 2 1 N ov 2 00 1 Generating and probing a two - photon Fock state with a single atom in a cavity
A two-photon Fock state is prepared in a cavity sustaining a " source mode " and a " target mode " , with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field o...
متن کاملCavity-Assisted Generation of Sustainable Macroscopic Entanglement of Ultracold Gases
Prospects for reaching persistent entanglement between two spatially-separated atomic Bose–Einstein condensates are outlined. The system setup comprises two condensates loaded in an optical lattice, which, in return, is confined within a high-Q optical resonator. The system is driven by an external laser that illuminates the atoms, such that photons can scatter into the cavity. In the superradi...
متن کاملGeneration of Nonclassical States of the Radiation Field in the System of a Single Trapped Atom in a Cavity within the First Order of the Lamb-Dicke Approximation
In this paper, we propose a theoretical scheme for the generation of non-classical states of the cavity field in a system of a single trapped atom via controlling the Lamb-Dicke parameter. By exploiting the super-operator method, we obtain an analytical expression for the density operator of the system by which we examine the dynamical behaviors of the atomic population inversion, the phase-spa...
متن کاملGeneration of dipole squeezing in a two-mode system with entangled coherent states of a quantized electromagnetic field
Two-mode quantized electromagnetic fields can be entangled and admit a large number of coherent states. In this paper, we consider a two-mode system that consists of a two-level atom interacting with a two-mode quantized electromagnetic field, which is initially prepared in an entangled two-mode coherent state, via a nondegenerate two-photon process in a lossless cavity. We study the quantum fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008